4/25/2009


Tank Frenzy Render Pipeline

I spent much of my initial work on building a render pipeline for the game Tank Frenzy. For more info on Tank Frenzy, the development blog is at http://blog.curiositystudios.net. The rendering engine for Tank Frenzy is written in C++ and uses DirectX10. The included code shows how I organized and implemented the rendering pipeline.
At the highest level, the rendering system utilizes three systems: a scene graph, a spatial graph, and a render graph. The scene graph is relatively simple and has a root node that it updates; the real content exists within the elements. The spatial graph is responsible for maintaining a system for fast collision lookups and frustum culling for generating a list of objects to draw. Implementing this full system has been a lower priority than some of my other tasks and while the structure is there, the actually implementation of a collision system has not happened. I thought it better to include my structure so that you can understand how the pieces fit together, than not provide it, even though it is not finished. The render graph is fairly simple and loops over a list of Geometry objects and renders them. This is where the engine would do any sort of sorting, batching, and instancing if and when we determine that those are necessary for our game’s performance. I designed these three systems the way I did so that I could separate the updating of elements, the colliding, and the rendering of elements. We didn’t know what kind of collisions system we would need or how to optimize it. By building it this way, we could see how the game worked and then build a partitioning system from that.
There are several elements that make up the scene graph: Spatial, Node, Geometry, Camera, and WorldObject.
The first element within the scene graph is the Spatial. Spatial has transformation information and a parent spatial. This lets it occupy a point in 3D space and exist as a leaf node within the graph.

Extending Spatial is Node. Node adds a list of children and modifies its update function to update all o fits children.

Geometry extends spatial and adds a mesh member and a render function. This lets it exist as a leaf node and can be drawn. The Render Graph contains a list of Geometries.

Camera extends Spatial and adds camera type functionality, such as generating view and projection matrices and setting up and lookat.

Last of all is WorldObject. A world object extends Node and can be considered drawable or collidable. While it doesn’t really function differently within the Scene Graph, it is the link to other systems. The SpatialGraph for example contains a list of WorldObject. Our Unit class extends WorldObject. WorldObject is what the application using our engine would primarily deal with.

The rendering system has to have something to draw and while Geometry can be considered a drawable element, it can only do so by containing a BaseMesh class. BaseMesh is an abstract class that contains general mesh information, shader variables, the input layout, and functionality for interacting with the video card. Note that BaseMesh holds a pointer to what we call a MeshModel which is static information describing a single mesh and can be referenced by multiple MeshModel instances.
Extending BaseMesh, we have StaticMesh and AnimatedMesh. These were written by my teammate Joshua Gilpatrick as he wrote the Maya model exporter and our C++ importer for his custom format. It only made sense he wrote the functionality to deal with that. I have included StaticMesh and not AnimatedMesh. StaticMesh is simpler, and should show you how we use the BaseMesh to allow for other types of meshes that utilize different variables on the video card. StaticMesh and AnimatedMesh cannot be instantiated directly and instead must be requested from the mesh manager which deals with loading our custom format and initializing the meshes.

I hope this overview and my code has given you a better understanding of the rendering system I wrote. If you have any questions, please feel free to send me an email.

Matthew Bozarth
matthew@raydenuni.com
matthewbozarth.com


